In an elastic collision of two particles the following quantity is conserved
Momentum of each particle
Speed of each particle
Kinetic energy of each particle
Total kinetic energy of both the particles
In one dimensional case, the relationship between force and position is shown in the figure. The work done by the force in displacing a body from $x = 1\, cm$ to $x = 5\, cm$ is ............ $\mathrm{ergs}$
The force $F$ acting on a body moving in a circle of radius $r$ is always perpendicular to the instantaneous velocity $v$. The work done by the force on the body in one complete rotation is :
A particle of mass $M$ is moving in a horizontal circle ofradius $R$ with uniform speed $v$. When it moves from one point to a diametrically opposite point, its
Power supplied to a particle of mass $2\, kg$ varies with time as $P = \frac{{3{t^2}}}{2}$ $watt$ . Here, $t$ is in $seconds$ . If velocity of particle at $t = 0$ is $v = 0$, the velocity of particle at time $t = 2s$ will be ............. $\mathrm{m}/ \mathrm{s}$
Four smooth steel balls of equal mass at rest are free to move along a straight line without friction. The first ball is given a velocity of $0.4\, m/s$. It collides head on with the second elastically, the second one similarly with the third and so on. The velocity of the last ball is .............. $\mathrm{m}/ \mathrm{s}$